The use of validated chemical probes to understand responder populations to epigenetic drugs

Thomas Paul

Oncology Research Unit, Pfizer Worldwide Research and Development, La Jolla, CA

Epigenetic Therapies in Oncology

Goal: Reverse cell fate decisions that maintain cancer cells in proliferative/selfrenewing, drug intolerant/resistant, or immunosuppressive state

Chromatin states control transcriptional programs and DNA repair

Alternative splicing and mRNA stability alter repertoire of transcripts for translation

Non-coding RNA programs fine tune transcriptional outputs

Responders to epigenetic therapy

Mutations in epigenetic regulators

Roy et al., Protein Cell, 2014

Cancer

Multi-subunit SWI/SNF Complex is Frequently Mutated in Cancer

SWI/SNF mutations across tumor types (all complex members)

% Lesions in SWI/SNF

 SWI/SNF chromatin-remodeling complex performs fundamental roles in gene regulation, cell lineage specification, and DNA repair

- Mutated in nearly 20% of all cancers
- Overall frequency approaches that of p53
- Most mutations are inactivating (LOF)

 Mutations are most common in the enzymatic subunit <u>SMARCA4</u> and the subunits that confer functional specificity (ARID1A, ARID1B, ARID2, PRBM1)

SMARCA4-deficient Lung Cancer Cells Are Selectively Dependent on SMARCA2

Pfizer External Use

Targeting SWI/SNF Complexes

Hypothesis: SWI/SNF complex can be targeted by bromodomain or ATPase inhibition

SGC Collaborative Bromodomain Probes so Far

Pfizer External Use

SGC Collaborative Bromodomain Probes so Far

Fragment Screening Identifies A New Bromodomain Binding Mode in SMARCA4

Journal of Medicinal Chemistry

Featured Article pubs.acs.org/jmd

Druggability Analysis and Structural Classification of Bromodomain Acetyl-lysine Binding Sites

Lewis R. Vidler,[†] Nathan Brown,[†] Stefan Knapp,[‡] and Swen Hoelder*^{,†}

- Unprecedented bromodomain binding mode
- Atypical ligand penetration deep into pocket
- Deep waters displaced by salicylic acid fragment

PFI-3 Potency and Selectivity to Family VIII Bromodomains in SWI/SNF Complexes

PFI-3 only shows a significant Tm shift with ٠ members of the PB1/SMARCA family

ΟН

PFI-3

SMARCA4

K_D= 89 nM

- No interaction with PB1(2) ٠
- Tm confirmed by use of DiscoveRx Bromoscan
- $T_{1/2}$ >264 h in PBS and cell media @ 37 °C
- No cross-reactivity in kinase panel
- Cytotox >50µM

PFI-3 Gets Into Cells: SMARCA2 FRAP in U2OS cells

- Diffusion of unbleached protein back into the bleached region is retarded by protein binding to chromatin
- PFI-3 reduced t1/2 recovery of full-length GFP-tagged SMARCA2 from chromatin (less chromatin interaction)
- PFI-3 is stable in cells for at least 24h

PFI-3 Promotes Differentiation in Stem Cell Models

genome for LIF/STAT3 signalling and by regulating polycomb function

Lena Ho^{1,6}, Erik L. Miller^{2,7}, Jehnna L. Ronan^{3,7}, Wen Qi Ho¹, Raja Jothi^{4,6,8} and Gerald R. Crabtree^{5,8}

Embryonic Stem Cells

ES cells differentiate in presence PFI-3 despite presence of LIF which maintains stemness

PFI-3 down-regulates pluripotency markers Pou5f1 and Nanog

PFI-3 promotes differentiation of trophoblast stem cells and expression of differentiation-associated genes

Fedorov et al.; Sci Adv. 2015

Pharmacological Inhibition of SMARCA2 Bromodomain Does Not Inhibit Growth of SMARCA4-deficient Lung Cancer Cells

Mean Nuclear (IF) Intensity

[30 µM]

Knockdown

SMARCA2 ATPase, But Not the Bromodomain, Activity Is Essential for Its Tumorigenic Potential

• SMARCA 2 or 4 bromodomain wild-type or mutant rescues NSCLC cell growth in SMARCA4 mutant cells (A549, H1299)

• ATPase-dead mutant SMARCA2 or 4 fails to rescue shRNA phenotype

Summary

- PFI-3 is a viable chemical probe and a first in class chemotype for Family VIII bromodomains
- Not a drug-like structure, but fit for purpose (cell biology)
- Cell activity is confirmed by displacement of ectopically expressed GFP-tagged SMARCA2 or 4 from chromatin
- PFI-3 treatment fails to recapitulate shRNA phenotypes in multiple cancer models dependent on SWI/SNF complexes (SMARCA4 mut. NSCLC, synovial sarcoma, AML, malignant rhabdoid tumors)
 - Lack of activity can be explained by failure of bromodomain inhibition to displace endogenous SWI/SNF complexes from chromatin
 - Activity in certain developmental contexts? esBAF?

LSD1 (Lysine Specific Demethylase), KDM1A

LSD1 - Enzyme Function

- Histone Lysine Demethylase targeting Histone H3
 Lysine 4 mono and dimethylation
 - Leads to gene repression

LSD1 - Role in Cancer

- LSD1 is over-expressed or mis-expressed in tumors leading to aberrant activation or repression of genes involved in oncogenic programming.
- LSD1 regulates cellular differentiation/self-renewal pathways critical for tumor maintenance
- LSD1 inhibitors shown to be active in Breast Cancer, Colon Cancer, Prostate cancer, Lung cancer, Neuroblastoma, Leukemias (APL, AML)

Early literature suggests LSD1 inhibition maybe effective in many solid tumor models

Huang Y, Casero et al., Clin Cancer Res., 2009 Lin J. et al. Biochem J. 2012

New Generation of Selective LSD1 Tool Compounds

University of Utah

SP2509 LSD1/CoREST Ki = 13 nM Cell Growth IC50

Cell-line	Cell Growth, IC50 (µM)
AN3 Ca	0.356
BT-20	0.489
BT-549	1.010
HCT 116	0.614
HER218	0.612
Hs-578-T	1.700
HT29	0.429
MCF-7	0.637
MDA-MB-231	1.040
MDA-MB-235	0.728
MDA-MB-435	1.440
MDA-MB-468	2.730
MIA PaCa-2	0.468
PANC-1	1.104
PC-3	2.160
SK-N-MC	0.329
T-47D	0.649
U87	1.160

GSK

GSK690 LSD1/CoREST Ki = 4 nM Cell/Gene Exp IC50 = 308 nM

Selective vs. LSD2, MAO-A, MAO-B Competitive w/ H3K4Me2 peptide

Oryzon

OG-86 LSD1 IC50 (uM) - HRP Assay = 0.047 IC50 (uM) - TR-FRET Assay = 0.004

Binding GSK690 (purple) at the opening of the FAD pocket

Off-target activities of LSD1 inhibitors in LSD1-/isogenic cell lines

LSD1 inhibitors do not alter cell growth however induce mesenchymal markers in HCT-116 cells

Pfizer External Use

Isogenic LSD1 -/- display mesenchymal differentiation and can not be rescued by LSD1 re-expression

LSD1-/- isogenic cells show high EMT gene markers

LSD1 is over-expressed in SCLC

LSD1 in Small Cell Lung Cancer

- LSD1 is over-expressed in SCLC
- LSD1 and corepressor of REST (CoREST) form complex shown to regulate neurological differentiation
 - SCLC is less-differentiated neuroendocrine cell (neural crest) origin
 - LSD1 inhibitors entered clinic for SCLC in 2014

Pfizer External Use

SCLC cell lines are sensitive to LSD1 inhibition

SCLC cell lines are sensitive to

LSD1 inhibitors show delayed activity in SCLC cell lines consistent with epigenetic mechanism

LSD1 inhibitors show cytostatic effects with G1 arrest at day 14

No changes observed in global histone modification levels in H3K4me1/2 or H3K9me1/2

Differential sensitivity to LSD1 inhibitors in predicted by a neuroendocrine/mesenchymal gene expression signature

Mesenchymal shifted SCLC cells are insensitive to LSD1 inhibitors

A. Udyavar et al. Cancer Research 2016

H69V mesenchymal variant cells are insensitive to LSD1 inhibition

LSD1 inhibitor treatment alters neuroendocrine and mesenchymal genes in SCLC

LSD1 inhibitor treatment induces morphological changes characteristic of mesenchymal-like cell lines

NCI-H526 (day 10)

COR-L88 (day 12)

LSD1 inhibition alters mesenchymal and neuroendocrine gene expression markers in sensitive models

RNA-seq analysis shows different gene expression responses in LSD1 inhibitor treated sensitive and resistant models

Neuronal and EMT pathways are enriched LSD1

Minimal gene expression changes are observed in LSD1 inhibitor treated resistant SCLC cell models

	-log(B·H p-value)																	
	0	1 11	Zestu	d	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Hepatic fibrosis / Hepatic Stellate Cell Activation					1	1												
Axonal Guidance Signaling					1	1		1							ORL 11417 1526	88 d day day1	ay 10 / 10 10	
Role of Macrophages, Fibroblasts, and Endothelial Cell in Rheumatoid Arthritis					1	ł	1											
Colorectal Cancer Metastasis Signaling						1			•									
Regulation of Epithelial- Mesenchymal Transition Pathway																		

LSD1-containing complexes in SCLC resemble BHC complexes previously shown to be important for neurological gene repression

	Sensitive	e	Resistant				
COR-L88	NCI-H526	NCI-H69	NCI-H82	NCI-H1694			
KDM1A (LSD1)	KDM1A (LSD1)	KDM1A (LSD1)	KDM1A (LSD1)	KDM1A (LSD1)			
RCOR1 (co-REST)	RCOR1 (co-REST)	RCOR1 (co-REST)	RCOR1 (co-REST)	RCOR1 (co-REST)			
RCOR2			RCOR2	RCOR2			
				RCOR3			
HDAC1							
HDAC2	HDAC2	HDAC2		HDAC2			
ZMYM2 (ZNF198)	ZMYM2 (ZNF198)		ZMYM2 (ZNF198)	ZMYM2 (ZNF198)			
ZMYM3				ZMYM3			
GSE1	GSE1	GSE1	GSE1	GSE1			
				PHF21A (BHC80)			
				HMG20A (BRAF35)			
				HMG20B			

Mosammaparast and Shi, Annual Rev. Biochem., 2010

A core–BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes

Mohamed-Ali Hakimi*[†], Daniel A. Bochar*[†], Josh Chenoweth[‡], William S. Lane[§], Gail Mandel[‡], and Ramin Shiekhattar*¹

*The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104; ¹Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794; and ¹Harvard Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, NA 02138

Edited by Michael G. Rosenfeld, University of California at San Diego, La Jolla, CA, and approved April 11, 2002 (received for review January 4, 2002)

CHIP-seq analysis demonstrates LSD1 regulation of H3K4me2 with enrichment for transcription factors involved in neurological and mesenchymal differentiation

Model for LSD1 Regulation in SCLC

PFI-3 Acknowledgements

Pfizer: **Shikhar Sharma**, Lisa Nottebaum, Rob Rollins, Dominique Verhelle, Valeria Fantin, **Daffyd Owen**, John Tatlock, Brian Gerstenberger, Agustin Casimiro-Garcia, John Trzupek, Mihir Parikh, R. Aldrin Denny, Bob Kumpf, Martin Wythes, Shenping Liu, Justin Stroh, Tom O'Connell, John Mathias, Martin Edwards, Mark Bunnage, Rachel Grimley, Caroline Benn, Karen Maegley, Jennifer Alley, Hozefa Bandukwala, Lih-Ling Lin, Shuying He, Fabien Vincent, Mat Pletcher, Carl Morris

SGC: Aled Edwards, Stefan Knapp, Cheryl Arrowsmith, Chas Bountra, Peter Brown, Susanne Muller-Knapp, Cynthia Tallant-Blanco, Sarah Picaud, Masoud Vedadi, Oleg Federov, Brian Marsden, Sarah Martin, Paul Brennan. Martin Philpott. Dalia Barsyte-Lovejoy, Fengling Li, Matthieu Schapira

MDAnderson Cancer Center

MD Anderson: **Bhavatarini Vangamudi**, Parantu Shah, Maria Kost-Alimova,, Xi Shi, Yanai Zhan, Elisabetta Leo, Harshad Mahadeshwar, Alexei Protopopov, Andrew Futreal, Trang Tieu, Mike Peoples, Timothy Heffernan, Joseph R. Marszalek, Carlo Toniatti, Alessia Petrocchi, Giulio Draetta, Philip Jones, Wylie Palmer, Jannik N. Andersen

DiscoveRx: Dan Treiber, Alison O'Mahony

LSD1 Acknowledgements

<u>Pfizer</u>

Shikhar Sharma Wen Yan Jill Hallin **Tim Nichols Timothy Affolter Dominique Verhelle** Tao Xio James Hardwick Mike Gregg Martin Wythes John Tatlock Xiu Yu You-Ai He Rose Ann Ferre Eric Johnson Samantha Greasley Karen Maegley Patrick Bingham Simon Bergqvist Zhou Zhu Stephanie Shi

Akshata Udyavar Vito Quaranta

